Site icon TechTalks

The symbiosis between edge computing and IoT

internet of things devices
Image credit: Depositphotos

Cloud computing has had an enormous impact on the way organizations use and deploy the network for objective purposes. From the widely adopted public cloud to the more expensive private cloud and the more complex and multifaceted hybrid cloud or multi-cloud environments, cloud computing has helped bring flexibility, versatility and scalability to businesses. For the first time, cloud solutions made it possible to access computing resources any time, anywhere, irrespective of device interface and location.

The cloud brought a literal revolution to the world of computing. But it’s a stepping stone to something better.

Despite of their revolutionary role in the history of scientific progress, steam engines were a milestone that prepared us for the more advanced electric engines. Likewise, we now have edge computing as a more advanced successor that deals with the shortcomings of the cloud environment.

Cloud computing requires collecting data and sending it to the cloud and receiving the results after the computing task is carried out. The whole process causes latency challenges because data must travel between data centers across different regions. Edge computing addresses this latency challenge by facilitating storage and computing close to where the data is generated.

Until now, internet of things (IoT) devices have mostly relied on the cloud computing environment for all their data storage, data management and computing tasks. But as edge computing has emerged as a more reliable, performance-driven and efficient solution, IoT devices can further boost their output and efficiency by taking part in edge networks. By taking part in edge networks, IoT devices can also further increase the speed, performance and responsiveness of edge computing networks.

Edge computing and IoT

Edge computing can address the connectivity problem IoT devices face in an efficient manner. By relocating key data processing functions to the edge of a network or close to where data is originated, edge computing helps connected devices maintain the same level of efficiency even while the network connection is poor.

While most IoT devices have limited processing capability, edge computing comes to their rescue by taking care of intensive processing needs locally at the very edge of the network. This helps IoT devices respond to various pressing requirements with near-zero latency. The evolving requirements of the IoT devices to rely on local processing power is actually evolving edge computing networks to incorporate edge data centers. Edge data centers and local data processing will also provide an extra layer of security between IoT devices and central cloud servers.

Key features of core IoT edge architecture

While IoT devices and sensors are becoming increasingly present in edge networks, it is important for future IoT app developers and strategists to know the key constituents and features of the IoT edge architecture. Let’s have a look at these key components or features.

5 ways IoT can add value to edge networks

By taking part in the edge computing network, IoT devices can boost network efficiency and performance to a great extent. Here are the key ways IoT devices can make high-value additions to the edge network:

Conclusion

The role of edge computing is closely intertwined with the emergence and proliferation of connected IoT devices. Presently, both IoT devices and edge computing actually play a complementary role with significant implications on end-user benefits. With the coordination of connected gadgets, edge computing will bring us a new era of instant gratification.

Exit mobile version